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Considerable advances have been made in the past few years in treating a variety 
of problems in slender-body Stokes flow (Taylor 1969; Batchelor 1970; Cox 1970, 
1971 ; Tillett 1970). However, the problem of treating the creeping motion past 
bluff objects, whose boundaries do not conform to a constant co-ordinate surface 
of one of the special orthogonal co-ordinate systems for which the Stokes slow- 
flow equation is simply separable, is still largely unsolved. In the slender-body 
Stokes flow studies mentioned above, the viscous-flow boundary-value 
problem is formulated approximately as an integral equation for an unknown 
distribution of Stokeslets over a line enclosed by the body. The theory is valid 
for only very extended shapes, since the error in drag decays inversely as the 
logarithm of the aspect ratio of the object. By contrast, the present authors 
show that the boundary-value problem for the axisymmetric flow past an 
arbitrary convex body of revolution can be formulated exactly as an integral 
equation for an unknown distribution of ring-like singularities over the surface 
of the body. The kernel in this integral equation is closely related to the funda- 
mental separable solutions of the Stokes slow-flow equation when written in an 
oblate spheroidal co-ordinate system of vanishing aspect ratio. The two lowest- 
order appropriate spheroidal singularities are found to  provide a complete 
description for all surface elements, except those perpendicular to the axis. 
Higher-order singularities of all orders are required to describe axially perpen- 
dicular surfaces, such as the ends of a cylinder or the blunt base of an object. 
The newly derived integral equation is solved numerically to provide the first 
theoretical solutions for low aspect ratio cylinders and cones. The theoretically 
predicted drag results are in excellent agreement with experimentally measured 
values. 

1. Introduction 
In  the 120 years that have elapsed since Stokes’s classic paper (1851) on the 

motion of a spherical pendulum bob in a very viscous liquid, an extensive body 
of literature has evolved for flows whose Reynolds number is sufficiently small 
for inertial forces to be neglected. A significant portion of this literature has been 
devoted to the creeping motion in an unbounded medium of a single object, or 
two spherical objects, where the boundaries conform to a co-ordinate surface of 
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one of the special orthogonal co-ordinate systems for which the Stokes slow-flow 
equation is simply separable. In  the past few years these studies have been 
extended to include some simple multiparticle flow configurations. For example, 
the present authors have used a multipole truncation technique to describe the 
steady, axisymmetric Stokes flow past finite line arrays of spheres and spheroids 
with arbitrary spacing in an unbounded fluid (Gluckman, Pfeffer & Weinbaum 
1971). This same technique has also been applied to the simple, unsteady three- 
body fluid-particle interaction problem of three spheres falling along their line 
of centres in a gravitational field (Gluckman, Pfeffer & Weinbaum 1972). 
Related truncation procedures had previously been used by Skalak and his 
colleagues for examining a variety of bounded axisymmetric motions with 
periodic boundary conditions, which were idealized models of capillary blood 
flow. These included the movement of an infinite line array of equally spaced 
spheres (Wang & Skalak 1969) and spheroids (Chen & Skalak 1970) along the 
axis of a circular tube with and without through-flow. In view of these advances 
i t  is perhaps quite surprising that very little progress has been made in the 
intervening years in describing the creeping motion past even a single object 
whose boundary departs significantly from one of the special natural co-ordinate 
surfaces. The only important exceptions are the varied problems in the slender- 
body Stokes flow examined by Burgers (1938), Tuck (1964), Taylor (1969)) 
Batchelor (1970)) Cox (1970, 1971), Tillet (1970) and others. 

The underlying difficulty in treating the near field of the Stokes flows with 
complicated boundary shapes is the slow decay of disturbances produced by any 
boundaries in the flow field. In  two dimensions this decay is logarithmic, while 
in three dimensions it is algebraic; in either case there is no mechanism for 
preventing the spread of the disturbance in all directions, unless inertial effects 
are included. The following two numerical examples are a graphic illustration of 
the far-reaching influence of boundaries on both the same and distant objects. 
Consider first the slow flow parallel to the line of centres of two spheres spaced 
twenty diameters apart. The exact solution of Stimson & Jeffery (1926), using 
spherical bipolar co-ordinates, shows that the drag on each sphere deviates by 
nearly 5% from the drag for a single isolated sphere even at this distance. 
This deviation is rather remarkable when one considers that the solid angle 
subtended by the boundary of the second sphere is only 111600 of the total solid 
angle. Consider next the continuous distribution of disturbances representing an 
extended shape. Batchelor (1970) estimates that the error in drag due to end 
effects in slender-body creeping-motion theory is given by B = (0.69 + 2*30n)-l, 
where LIR = lon; thus a 10% error in drag can be anticipated for objects with 
aspect ratios as large as lo4. 

The long-range effects just described make it impractical in general to handle 
infinite-domain Stokes-like flows using numerical finite-difference schemes with 
finite but large integration domains. Similarly, solution techniques based on 
iterative procedures, such as the method of reflexions (see Happel &: Brenner 
(1965) for an excellent summary of the applications of this solution procedure), 
which are highly successful for dilute systems, are very slowly convergent when 
disturbances are closely spaced or continuously distributed. As an illustration. 
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the first nine terms of the Faxen (1925) series solution for the flow parallel 
to the axis of two touching spheres, using this method, yield drag results that 
deviate by about 25 % from the Stimson & Jeffery (1926) exact solution. One 
therefore seeks a method of solution which is particularly suited for treating 
flows with slowly decaying disturbances. One such method, which has been 
applied with considerable success in potential-flow theory (see Hess & Smith 
(1966) for summary), is the so-called boundary method. In  this method one does 
not solve directly for the flow field in all of space, but seeks to determine instead 
that unknown distribution of fundamental singular solutions of the governing 
differential equation which will enable the requisite boundary condition to be 
satisfied on the object surface. The method applies to any linear boundary-value 
problem, and has the advantage that it effectively reduces the number of dimen- 
sions over which the unknown functions need to be determined, provided the 
singular solutions representing the desired boundaries can be distributed either 
over a surface, a line or at discrete points. For surface distributions of singularities 
one has to solve a one- or two-dimensional integral equation, depending on 
whether the object is two-dimensional, axially symmetric or truly three- 
dimensional, while for discrete point distributions one has to solve an array of 
linear algebraic relations. The disadvantages of the boundary method are that 
the derivation of the fundamental singular solution, its spatial distribution and 
completeness for satisfying a given boundary-value problem can be very difficult 
to find. The discussion of the next few paragraphs will elucidate these remarks. 

Some basic insight into the above problems for the Stokes flow can be deduced 
from the known results of the simpler, related problem for potential flow. These 
potential-flow results have the further importance that they are derived for 
Laplace’s equation, for which mathematically rigorous statements about unique- 
ness and related questions are known to be true. Basic works on potential-flow 
theory (e.g. Kellogg 1929) show that the disturbance potential of an object can 
under quite general conditions be represented by a source distribution over its 
surface. The point source thus serves as the kernel in the integral equation for 
the general three-dimensional body. The principal limitation is that the repre- 
sentation does not apply in the immediate vicinity of discontinuous changes in 
body slope. For two .dimensional flow this representation is formally equivalent 
to a surface vorticity distribution (Praeger 1928), and for axially symmetric 
flow to a surface distribution of constant strength ring sources (Vandrey 1964; 
Hess & Smith 1966). For certain special geometries, surface source or vortex 
distributions do not appear to be necessary, but can be replaced by a point 
singularity (sphere) or a line distribution of internal sources which can be finite 
(prolate spheroid) or iniinite (two-dimensional circular cylinder) in length. 
Internal line source distributions also provide the basis for the approximate 
representations introduced by von Ktirmtin (1930), and used by numerous 
investigators in slender-body potential-flow theory, where the line source 
distributions are located along the axis of symmetry. This simple internal 
distribution cannot be used to represent an arbitrary axisymmetric body; for 
there is no assurance that a potential function, which is analytic outside a closed 
boundary, can be continued analytically to the axis without encountering 
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singularities. This same argument of course applies to any higher-order distri- 
bution of internal singularities, although for potential flow the singularities 
considered in the literature have been confined, to the authors’ knowledge, to 
source, dipole or vortex distributions. Higher-order internal distributions, how- 
ever, have recently been applied to varied problems in the Stokes flow, and these 
results will be discussed shortly. 

I n  contrast to potential-flow theory, the problem of the derivation and distri- 
bution of fundamental singular solutions for the three-dimensional Stokes flows 
has not been resolved, except for special geometries where the boundaries 
conform to a co-ordinate surface of one of the orthogonal co-ordinate systems 
for which the generalized axisymmetric Stokes flow equation is simply separable, 
For the latter geometries, Payne & Pel1 (1960) have shown that the infinitme set 
of simply separable singular solutions for each co-ordinate system provides a 
complete set of generating functions, which can be used to satisfy rather general 
viscous-flow boundary conditions along any constant co-ordinate surface of the 
same orthogonal co-ordinate system. Wang & Skalak (1969), Chen & Skalak 
(1970) and Gluckman et al. (1971) have taken advantage of the completeness of 
these fundamental separable solutions to obtain the exact Stokes solutions for 
both the infinite periodic and finite line arrays of spheres and spheroids referred 
to earlier. I n  these studies, a single infinite sequence of appropriate singularities 
is placed a t  the origin of each sphere and spheroid. The results of Gluckman et al. 
(1971) are of further interest in that they include a detailed investigation of the 
convergence properties for the Stokes flow of a variation of the boundary method 
for multiparticle flow termed the multipole truncation technique. The conver- 
gence tests for the technique show that for closely spaced simple objects it is far 
more efficient to use a truncated series of point singularities, and satisfy boundary 
conditions a t  discrete points on each object simultaneously, than to generate a 
series solution through successive iteration in which an approximate boundary- 
value problem is solved exactly at each order, as in the method of reflexions. 
For example, the multipole truncation technique yields first-, second- and fifth- 
order truncation solutions for the drag, which are accurate to 2.5, 0-1 and 
0.001 yo respectively for the flow parallel to the axis of two touching spheres. 
This rapid convergence of the solution for the drag is in sharp contrast to the 
previously mentioned results obtained by Faxen (1925) using the method of 
reflexions. 

While the infinite sequence of simple separable solutions placed a t  the origin 
of a given orthogonal co-ordinate system is a complete set of functions for only 
a constant co-ordinate surface of that same orthogonal co-ordinate system, this 
does not preclude its careful use as an approximate representation for other 
boundaries. For example, O’Brien (1968) and Hyman (1970) have obtained good 
numerical approximations for slightly deformed spheres using a truncated set 
of separable spherical solutions placed a t  the centre of each object. This same 
type of approximate representation was also examined by the authors for 
axially symmetric objects with greater eccentricity than those considered by 
O’Brien and Hyman prior to the development of the general formulation pre- 
sented herein. Several numerical experiments were performed, in which different 



Slow viscous flow past a body of revolution 681 

distributions of internal spherical singularities were used to approximate prolate 
spheroids of various aspect ratios. These results are summarized briefly in 
appendix A. Good numerical agreement with exact solutions could only be 
obtained for prolate spheroids with aspect ratios less than 1.5. Furthermore, 
for a prolate spheroid with an aspect ratio of 2, the numerical solutions did not 
converge as the number of higher order spherical multipolest retained in the 
description was increased (see tables 6 and 7). Approximate representations 
using a continuous line distribution of the lowest-order spherical singularity, 
the point force, have also been extensively studied. This approximation forms 
the basis for the various investigations of the slender-body Stokes flow men- 
tioned previously. 

Tuck (1968) and Batchelor (1970) suggest that a suitable axial distribution 
of singularities might be used to represent arbitrary (not necessarily slender) 
axisymmetric bodies, but do not exploit this idea further. Both authors are 
careful to point out that the validity of the approach for non-slender shapes 
depends critically on whether the exact solution for the external flow can be 
continued analytically inside the body all the way to the axis. 

While ingenious approximate methods might be devised for representing the 
more varied axisymmetric Stokes flows using judiciously chosen distributions 
of higher-order internal singularities, the advantage of a general formulation 
based on a continuous distribution of fundamental surface singnlarities akin to 
that used in potential-flow theory is self-evident.$ The first task is to determine 
an appropriate fundamental singular solution. One might attempt to derive a 
Green’s function for the generalized axisymmetric Stokes equation. However, 
this problem is somewhat more formidable than the equivalent two-dimensional 
Stokes-flow problem, where one considers the biharmonic equation and the 
relatively simple constant-coefficient double Laplacian operator. For this reason, 
the authors have adopted a more intuitive approach. In  essence, one seeks to 
determine a fundamental ring-like singularity, which has the flexibility to 
satisfy viscous-flow boundary conditions on the exterior surface of a small 
cone frustrum of infinitesimal slant height. To this end, one notes that the 
fundamental separable solutions for the axisymmetric Stokes stream function, 
in an oblate spheroidal co-ordinate system of vanishing aspect ratio, produce 
a velocity disturbance which is smoothly varying everywhere except at  the 
focal circle where both velocity components become infinite. At the surface 
of the vanishingly thin spheroid or disk bounded by the focal circle, a finite 
velocity disturbance is felt; the disk surface therefore appears as a finite source 
of both mass and momentum. Such a flux is of course required to balance the 
incident stream and satisfy the no-slip boundary conditions in the Stokes flow 

t The term multipole adopted in Gluckman et aZ. (1971) refers to the superposition of 
the fundamental irrotational and rotational separable solutions of the same order. Thus, 
the lowest-order spherical multipole is the sum of a potential-flow doublet and a Stokeslet 
or point force. Each multipole contains two arbitrary constants, one from each solution, 
and provides the freedom to satisfy the viscous-flow boundary conditions at one point 
on the generating arc of an axisymmetric body. 

$ Tuck (1968) notes that one very important advantage of using a surface distribution 
of singularities is that it avoids the problem of analytic continuation inside the body. 
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past an actual disk. Similarly, the infinite velocity at the edge of the disk is not 
objectionable, since it is a singular boundary point for a real disk. On the other 
hand, for a general body of revolution both the singular velocity behaviour at the 
focal circle and the finite interior fluxes are undesirable, the first because it is 
incompatible with the no-slip boundary conditions on a smooth surface; the 
second because there can be no accumulation of mass and momentum within a 
closed boundary. Our objective, then, will be to derive the necessary and suffi- 
cient conditions for eliminating this unwanted behaviour. We shall find, not 
surprisingly, that the conditions for suppressing singular surface velocities are 
identical with those for eliminating interior fluxes in the plane of the singularity. 
It will also be shown that, except for axially perpendicular surface elements, 
only the two lowest-order rotational and irrotational spheroid singularities are 
required to satisfy viscous-flow boundary conditions on a differential surface 
element. 

As just intimated, special treatment is required in the vicinity of surfaces 
perpendicular to the axis (e.g. cylinder ends or a blunt base). In  the potential- 
flow calculations of Hess & Smith (1966), blunt surfaces did not require special 
treatment, while sharp edges were rounded off and represented by cone frustrums 
with finer dimensions. There was no need to consider singularities of an order 
higher than that of the ring source. In  the present analysis, a similar approxi- 
mation could be made, in which blunt ends would be given a slight thickness 
and subdivided into a fine meshwork of conical elements with steep but finite 
slopes. A more efficient representation, however, was discovered for surface 
elements perpendicular to the symmetry axis. While only the lowest-order 
rotational and irrotational spheroidal singularities are required to describe the 
uniform flow past an isolated vanishingly thin oblate spheroid or disk, the 
infinite array of higher-order singularities does constitute a complete set of func- 
tions to satisfy an arbitrary disturbance along the surface of the disk produced 
by any given distribution of other singularities in the flow field. Thus, the inclu- 
sion of higlier-order spheroidal multipoles of vanishing aspect ratio placed at  the 
axial location of a vertical portion of surface provides the freedom to satisfy the 
no-slip boundary conditions a t  any number of discrete points along this portion 
of surface, the number of points depending on the order of the multipoles re- 
tained in the description. 

Section 2 derives the fundamental singular solution of the axisymmetric 
Stokes equation, which can be used to represent the disturbance produced by 
an infinitesimal surface element. The integral representation for a general body 
of revolution and its finite-difference approximation are presented in $3.  Section 
4 discusses the matrix solution of the finite-difference equations, and presents 
results showing the convergence of the numerical solution to the exact solution 
for prolate spheroids as the number of approximating surface elements is 
increased. The use of higher-order multipoles for blunt end representations is 
given in § 5, together with numerical solutions presented for the flow past short 
finite cylinders and cones. Finally, $6 describes an approximate method for 
obtaining solutions for flow past long finite cylinders using multiple prolate 
spheroidal representations. 



Slow viscousJlow past a body of revolution 68 3 

2. The fundamental solution 
As discussed in $1, the disturbance produced by complex bodies of revolution 

in the Stokes flow can be represented by a surface distribution of ring-like 
disturbances, derived as a limit process from the fundamental separable solu- 
tions of the axially symmetric equations written in oblate spheroidal co- 
ordinates, D W $ h  = 0, 

where @ is the axially symmetric stream function, D2 is the generalized axi- 
symmetric potential operator and 5, q are the oblate spheroidal co-ordinates 
shown in figure 1. They are related to the axial and radial co-ordinates x, y by 
the co-ordinate transformation 

I z + i y  = csinh(c+iq), 

x = csinhccosq, y = ccoshcsinq, 

c2 = a2 - b2. 

( 2 . 2 ~ )  

The focal radii R, and R, are given by 

R, = [x2 + (y - c ) ~ ] * ,  R2 = [x2 + (y + c)~]$ .  (2 .2b )  

The fundamental separable solutions of ( 2 .  l), which are bounded at infinity 
and well behaved along the axis, were first presented by Sampson (1891). 

@ = [DaP + B2H2(P) + D4H"P)I I2k) + P 3  + B3H3(P) 

-I- &Hd~)II33(d + 5 [DnHn-,(P) +BnHn(P) +Dn+,Hn+2(P)I In(q), (2 .3 )  
n=4 

where 

q = cosq = [ 1 - (9)2]4, 
and B,, Dn are complex constants, In (p )  are Gegenbauer functions of the first 
kind, and H,(p) are Gegenbauer functions of the second kind. 

For future reference In and H, are related to the more familiar Legendre 
functions Pn and Q,, of the first and second kind, by 

where 4-J(q) = 1, 4(a)  = -a, 4 ( p )  = -p ,  q ( p )  = - 1. 

The solutions (2 .3 )  comprise a complete set of functions that can be used to 
satisfy the viscous-flow boundary conditions along a constant co-ordinate 
surface p = po for an arbitrary distribution of external singularities. The total 
stream function is the sum of @ and all other contributions @R associated with 
the rest of the flow field. As before we are interested in the behaviour of the 
individual solutions (2 .3 )  in the limit as the aspect ratio of the spheroidal co- 
ordinate system vanishes, that is as b approaches zero and the focal radius c 
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7) = O  

q= 1 

--I 
FIGURE 1. Oblate spheroidal co-ordinate system. 

approaches a, the radius of the major axis of the spheroid. If one requires in 
addition that a be equal to the local radius y,(z) of the generating curve of the 
body of revolution, the solutions (2.3) in the limit b --f 0 become ring-like distur- 
bances lying on the surface of the body that is to be represented. Thus, we let 
c+ys(x),  denote R,, €2, by pl ,  p z  to indicate that the limit b = 0 has been taken, 
and express p 7  q by 

~ 

(2.5) 
P 2  - P1 

lim b-+O lim b+O 

where, from (2.2b), 

To satisfy viscous-flow boundary conditions at  the surface of a general body 
of revolution, one needs to examine the limiting behaviour of both the x and y 
velocity components induced by the singular disturbances (2.3) as the focal ring 
c = ys is approached, and derive the necessary conditions for suppressing the 
unwanted singular behaviour. These velocity components are given by 

where 

a$- W a P  
?Y aP aY aq ay 
_ -  _--  +--. 

While singularities of all orders are present in (2.3), we shall find that the I, 
and I3 terms in (2.3) are sufficient by themselves to satisfy the no-slip boundary 
conditions to order (p,/ys)* on an arbitrary small surface element containing the 
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focal ring c = ys, unless the surface element is perpendicular to the axis. Thus, 
truncating the expression for lif in (2.3) at n = 3, one has, for a$/ap and aliflaq 
in (2.6), 

(2-7) 1 ’ = (D2-B24?1(P)) ‘2(q) -B34?2(r)) ‘3(q)> aP 

aq 

a’n(q)/aq = -Pn-l(q)? aHn(P)/aP = -Qm-l(P)* 

- _ -  ” - (D2pfB2H2(P)) 4- (03+B3H3(P))P2(q), 

where we have used the differentiation formulae 

The spatial derivatives of p and q in (2.6) are obtained from (2.5) and the asso- 

where 011,2 and p1,2 are defined by (2.8). Substituting results (2.7) and (2.8) in 
(2.6), and using the definitions (2.41, one obtains 

Expressions (2.9a, 6) give the disturbance velocity field at  any point x, y due t o  
the two lowest-order spheroidal multipoles of vanishing aspect ratio with a 
common focal ring located at (0, y,) in x, y co-ordinates, and at (0,O) in p ,  q co- 
ordinates. We shall now examine the behaviour of (2.9a, b )  as the field point x, y 
approaches the focal point (0 ,  y,) along an arbitrary line 6’ (see figure 2(a)) in a 
meridian plane containing the symmetry axis. 

The functions Q1, Q2, H,, H3 are infinite series which converge for lpl < 1. 
As p + 0 these infinite series can be approximated by 

Qi@) = - 1 + p 2  + 0(p4), 
&(p) = P - ~ P ~ + O ( P ~ ) ,  H3(p) = -++p2+o(p4) .  3+0(p5)’1 Q2@) = - 2~ + ZP 

(2.10) 
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1, I ' 1  l , + l  

FIGURE 2. (a )  Geometry of an oblate spheroid of zero aspect ratio. 
(b)  Piecewise representation of a section of a general body of revolution. 

Since the ai and pi are of O( 1) except as 8+ 47~ (see (2.14)), a cursory examination 
of (2.9a, b) and (2.10) shows that both u and v in (2.9) become singular in the 
limit p --f 0, q-+ 0. Such singular behaviour is, of course, incompatible with 
satisfying no-slip boundary conditions at  a solid surface, and must be eliminated. 
The necessary conditions for suppressing this unwanted behaviour can be de- 
duced by developing u and w in ( 2 . 9 ~ )  and (2.92)) as it Taylor series expansion 
about p = 0, q = 0. We shall find that consideration of the lowest-order terms 
in this Taylor series expansion is sufficient for eliminating the singular velocities, 
but does not lead to a unique determination of the complex constant coefficients. 
One must proceed to the next higher-order terms in the series to see how these 
coefficients are uniquely determined by the no-slip boundary conditions. 

Referring to figure 2 (a), one observes from the geometry that 

p; = (2y, + p1 sin @)2 +pi cos2 8. (2.11) 

Now, provided y8 + 0, there will always be some small neighbourhood about the 
focal point in the upper half of the meridian plane (O,y,) where (2.11) can be 

~ 

approximated by 
p2 = 2y,( l+&sin8+0k)~) .  2YS (2.12) 
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Substituting (2.12) into (2.5) one finds that both p and q can be developed as an 
infinite series in fractional half powers of pl/ys: 

P = i[(!$71+0($], q = f$7,+okl, (2.13) 

where n1 = (1 +sine)*, n, = (1 -sine)). Similarly, the ai and pi in (2.9) from 
their definitions in (2.8) can with the aid of (2.12) be written as 

(2.14) 
1-sine 

The Taylor series expansion of u and v about the focal point (0, ys) is now 
readily obtained by substituting results (2.10), (2.13) and (2.14) in (2.9). Both 
series are in fractional half powers of pl/y8 and take the form 

1 u = ul(y+u2@++o($ 

v = v1~)-*+v2($+0($  

(2.15) 

where the ui and vi are of order unity except as B++n. The expressions for u1 
and v1 in (2.15) are given by 

(2.16) 1 u - 5 ( D 2 + B 2 ) - - 3 ( D 3 - 9 ) ,  - 4y,2 4YZ 

v1 = 2 'OS ' (D, + B,) + cos e 
4% =1 4Ys =z (D,  - :). 

It is evident from (2.15) that if u and v are not to be singular as p1 -+ 0 on an 
arbitrary line passing through the focal point (0, ys) then both u1 and v1 must 
vanish for all 8. Thus, from (2.16), the singular behaviour can be suppressed by 
requiring the coefficients of the rotational and irrotational solutions to satisfy 
the compatibility conditions 

D, = - B,, D3 = QB3. (2.17) 

No further information can be obtained from the leading terms in the expansion 
(2.15), and one must proceed to the next term in the expansion to see how the 
no-slip boundary conditions are satisfied on a small surface element in the 
vicinity of the focal circle. 

The expressions for u., and v, in (2.15) obtained from (2.9), (2.10), (2.13) and 
(2.14) are quite lengthy, but simplify significantly once the coefficient relations 
(2.17) are used. These simplified expressions are 

(2.18) 
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Equation (2.15) with u1 = v1 = 0 and u,, v2 given by (2.18) is smoothly behaved 
and describes the local disturbance produced by an isolated spheroidal singu- 
larity in the vicinity of its focal circle. To see how this isolated disturbance enters 
into the problem of satisfying viscous boundary conditions on a general body of 
revolution one must consider the disturbance velocities uR and V, produced by 
all other disturbances in the flow field. In the local region for which the Taylor 
series expansion (2.15) is valid, uR and vR are smoothly varying functions. In  
essence then, one would like to determine the B, and B3 coefficients in (2.18) by 
requiring that the u2 and 21, terms in (2.15) negate locally the U, and vR contri- 
butions, and thereby satisfy the no-slip boundary conditions in some mean 
sense on an arbitrary cone frustrum of small slant height whose midpoint is 
the focal circle of the disturbance (2.9) or its local representation (2.15). 

As shown in figure 2 (b), the general body of revolution is approximated by a 
piecewise continuous sequence of j = 1,2,  . . . , N frustrums of cones, which in the 
limit of vanishing slant height N - t  co will exactly represent the body. A ring- 
like disturbance given by (2.9)) now denoted by u j  and vi to distinguish thejth 
surface element with local behaviour described by (2.15), is placed in the surface 
at the midpoint of each conical element. The slope of the j t h  surface is tan Oj 
and its length is given by 2Zj. uRj and vRj now denote the disturbance velocity 
due to all disturbances not located in the j th  element. Thus, to satisfy the no- 
slip boundary conditions in an integral average sense on the j th  surface element 
one requires that 

The range of integration in (2.19) has been split about the midpoint of the 
element, since the functions uZj and v2j in (2.18) change in passing through the 
focal point from the third to the first quadrant. The surface element whose 
angle is 0, in the first quadrant is n+Oj in the third quadrant. One observes 
from (2.13) that nl(Bj+n) = n,(Bj) and that n2(Bj+n) = nl(Bj). Thus, in the 
third quadrant uZj and v2? from (2.18) are given by 

The integration of (2.19) using relations (2.15)) (2.18) and (2.20) is straight- 
forward. We give only the final result truncated at  O(lj/y$ : 
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The integrals on the left-hand side of (2.21) are well-behaved functions, in which 
all the other B2i and B,$ (i =+ j) appear linearly owing to the linear summation of 
disturbances. Thus ( 2 . 2 1 ~ )  and (2.21 b )  provide two linearly independent equa- 
tions for B,, and B,, in terms of all the other coefficients and the incident stream. 
I n  general, for a body of revolution approximated by N conical elements one 
obtains a coupled system of 2N linear algebraic relations for the B,, and B3i 
( j  = 1 , 2 ,  . .., N )  which can be solved by a suitable matrix inversion technique. 
I n  the limit as N + co, 1, + dl,, the B,, and B,, become a continuous distribution 
B,(x) and B3(x) and the no-slip boundary conditions are satisfied in an integral 
average sense on each differential surface element dl,. The matrix of equations 
(2 .21)  ( j  = 1 , 2 , 3 ,  ..., N )  have a unique solution provided none of the 8, = QT. 

This case, which is exceptional because the integral term on the left-hand side 
of (2.21 b )  becomes infinite, is given special consideration in 5 5. 

We now return to the question as to why the higher-order separable solutions 
with coefficients n 2 4 in ( 2 . 3 )  can be omitted in the representation of a piece- 
wise smooth body of revolution whose local slope is nowhere perpendicular to 
the axis. I n  general all the higher-order B,, and Dllj  are determined by requiring 
that the no-slip boundary conditions be satisfied to higher order in the Taylor 
expansion (2 .15) .  The boundary-value problem for each higher-order term in 
the expansion introduces 2N new algebraic relations which are obtained in the 
same manner as ( 2 . 2 1 ~ ~ )  and (2.21 b) .  Similarly, each higher-order multipole in 
(2 .3 )  provides 2N new coefficients and thus the freedom to satisfy the 2N addi- 
tional relations. I n  the limit as 1, -+ dlj  the spheroidal solutions with coefficients 
n 2 4 provide only higher-order differential corrections which can be neglected in 
a superposition integral based on a continuous distribution of surface singu- 
larities. These high-order spheroidal solutions could be used to provide improved 
accuracy for a numerical approximation in which the body is represented by N 
frustrums of cones, but here again the same improved accuracy could just aseasily 
be obtained by increasing N ,  the number of approximating surface elements. 

From the foregoing derivations and discussions, it  is reasonable to construct 
the fundamental solution for the stream function for an arbitrary convex body 
of revolution from only the two lowest-order rotational and irrotational spheroidal 
singularities in (2 .3) ,  

x = B,( - P + f u P ) )  I2(d +B3(Q + H3(P)) I3(4> (2 .22)  

where the limit process indicated by equations (2 .5 )  has been applied and the 
compatibility conditions (2 .17)  satisfied. 

In  concluding $ 2  we inquire whether the fundamental solution just derived 
might have a simple physical description. To this end we examine the behaviour 
of the fundamental solution (2 .22)  in the plane x = 0. On first glance it might 
appear that the disturbance in this plane is disk-like rather than ring-like in 
nature. This behaviour is suggested by the fact that the solution for the axi- 
symmetric flow past an isolated disk is described by just the B, and D,  terms in 
(2 .3 )  in the limit b = 0. For a uniform incident stream this disk solution is given 

(2.23) 

44 F L M  55 
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where the first term is the free-stream contribution qm and pO+O is the disk 
surface. 

Let us now compare the behaviour of solutions (2.22) and (2.23) in the plane 
x = 0. From (2.5), when x = 0, q = 0 for y > ys and q2 = 1 - (y/yJ2 for y < ys. 
Thus, when x = 0, I,(q) = Q for y > ys, while 12(q) = + ( ~ / y , ) ~  for y < ys, which is 
the same y dependence as for a uniform stream. As p = po --f 0, the second term 
in brackets in (2.23) has the limiting value & and, as one would expect, just 
cancels the free-stream contribution along the disk surface since , ( O )  = &. The 
B, and D,  terms in the disk solution therefore act just as a uniform axial source 
of momentum emanating at the disk surface. By contrast, the p dependence in 
both the B, and B, terms in (2.22) vanishes as p -+ 0. The coefficient relations 
(2.17) are therefore the necessary and sufficient conditions for the elimination 
of the axial flow in the interior of the focal circle. On the other hand, for x = 0 
and y > ys a finite axial velocity exists. This axial flow arises solely from the B2 
term in (2.22) since I,(q) = 0 for x = 0 and y > ys. In the vicinity of the focal 
circle the axial velocity component is approximated by (2.16) with u1 = 0 and 
u, given by (2.18) evaluated a t  8 = in. 

In  a similar manner the radial velocity in the plane of the focal circle can be 
examined. One finds that v = 0 everywhere in the plane x = 0 for the disk 
solution (2.23), whereas 0 = 0 only for y < ys for the fundamental disturbance 
(2.22). For y > ys there is a finite contribution to the radial velocity along x = 0 
that arises now from the B, term in (2.22). The function I,(q) is a bilobular dis- 
turbance with zeros at q = 0, f 1 and a maximum at q = 1/43, - 1/43 in that 
order. The streamline pattern for the fundamental disturbance (2.22) is there- 
fore comprised of two ring vortices rotating in an opposite sense with a stagnation 
ring at  the focal circle. The strength of the vortices, and hence their orientation 
with respect to the axis, is determined by the relative magnitude of the B, and 
B, coefficients. 

3. The superposition integral and its numerical representation 
One would now like to construct a superposition integral representing a 

general body of revolution from the fundamental disturbance derived in $2.  
From (2.22) the kernel of this superposition integral is 

where p = p(x ,  y:x‘, ys(x’)) = i 

q = q(x,y:x’,zJs(x’)) = 1 -  - 

- 
I T 7  

[ ( : ; 3 g ” 3  

P1 = Pl(X, y : x’, YS(2’)) = [(x - 42 + (y - ys(x’))214 

Pz = P,(~,Y:x‘,Ys(~”’) = rfx-x‘)2+(y+ys(x’))21~. 

Here x, y is an arbitrary field point, XI, yS(x‘) are the co-ordinates of the focal 
circle of the elemental ring like disturbance and B,(x’) and B3(x’) are the strength 
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per unit length of the two lowest order multipoles at 5’. The total stream function 
Y” is then the summation of q?m, the stream function for the incident stream, and 
a superposition integral representing the summation of all surface disturbances 
on a body of length 1. 

1 

0 
Y” = $-m +I B,(x’) [H,((P) -PI HI- !I2) + -733(X’) [H3(P) - 51 $dl - P2) &’. (3.2) 

The unknown distributions B,(x’) and B3(x’) are determined by requiring that 
u and v, hence aY/ax and aYfay satis$ appropriate boundary conditions along 
y,(x), the surface of the body. The integral equations for B,(x’) and B3(x’) are 
therefore obtained by differentiating (3.2) using results (2.6) and (2.7) and 
applying the no-slip boundary conditions on y,(x) : 

1 B3(Xr )  2 ( Q 2 ( p ) + i )  (q-q3)--((H3(p)-Q) aq (1-3q2) dx’. (3.4) 
+ T [ a y  aY 

The integrals in (3.3) and (3.4) are evaluated at  each point along the profile 
curve of the body by letting the field point x ,  y in the expressions for p and q 
in (3.1) be a specified point on the surface. The expressions for ap/ax, apfay, 
aqlax, aqfay are given by (2.8) with x replaced by x--2’. The solutions of (3.3) 
and (3.4) for the disturbance distributions B2(x’) and B3(x‘) when substituted 
back in (3.2) provide the solution for the entire flow field. For reasons given 
earlier, the formulation of the boundary-value problem as a coupled pair of 
integral equations (3.3) and (3.4) has the important advantage that it has 
reduced the task of obtaining a solution from that of determining an unknown 
function in all of space to that of determining a one-dimensional distribution of 
unknown coefficients for an elemental disturbance whose functional form is 
known. 

The solution of (3.3) and (3.4) for a general boundary shape is not possible 
analytically, but is readily accomplished by finite-difference methods. As des- 
cribed in 3 2 and shown in figure 2 (b ) ,  a general body of revolution can be formed 
from j = 1,2, .. ., N contiguous surface elements each of which is the frustrum 
of a cone. To satisfy the no-slip boundary conditions at  any convenient point 
on the line segment used as the generating arc for each conical element, B,(z) 
and B3(x)  in the integrand of (3.3) and (3.4) are approximated by different but 
constant values for each cone frustrum. The latter is equivalent to placing a 
finite number of constant strength ring-like disturbances at suitably chosen 
intervals along the surface of the object. The integration of (3.3) and (3.4) yields 
two linear algebraic relations for each cone frustrum. Consequently, a system of 
2N linear algebraic equations for the 2N unknown BZj  and B3j is obtained for 
the entire surface. 

44-2 
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In  accord with the remarks of the last paragraph, (3.3) can be approximated 
numerically at  any point x, y,(x) on the profile curve of the body by 

where the integration is now performed separately over each axial line segment 
of length 21, cos 8, representing the axial projection of the generating curve for 
each conical element and then summed over all such segments. A related ex- 
pression may be obtained from (3.4). 

Although the kernels of the integrals in (3.5) are smoothly behaved, since the 
singular beliaviour of the velocity components a t  the surface has been sup- 
pressed, the kernel still becomes a sensitive function of position as the integration 
approaches the axial station x a t  which the no-slip boundary condition is to be 
satisfied. Therefore, it  is convenient to use two different approximations in 
evaluating the integrals in (3.5)) depending on whether the boundary point lies 
inside or outside the range of integration of the j th  surface element. (Note that 
each integral gives a result equivalent to (2.21) where the disturbances are 
distributed at  discrete locations x = xi and the no-slip boundary conditions 
satisfied in an integral average sense on each surface element. Here the distur- 
bances are continuously distributed, and the no-slip boundary conditions satis- 
fied a t  discrete points along the profile curve of the body.) 

When the boundary point at which the no-slip boundary condition is to be 
satisfied lies inside thejth integration interval the kernel in (3.5) is approximated 
by the lowest-order non-vanishing term of its Taylor series expansion about this 
boundary point. This series, except for multiplicative constants, is obviously 
the same as (2.15). Thus, if the boundary points at which (3.5) is satisfied in the 
j t h  integration interval is at  xi = 0, the centre of the generating line segment for 
the j th  cone frustrum, the integration of (3.5) in this interval yields the right- 
hand side of (2.21a) with an appropriate multiplicative factor. When the boun- 
dary point at  which the no-slip boundary condition is to be satisfied lies outside 
thejth integration interval, the kernel in (3.5) will be a slowly-varying function 
over the range of integration for each surface element. A satisfactory approxi- 
mation in this case is to simply treat the kernel as a constant, whose value is 
given by its value at the centre of the interval. The final result obtained by inte- 
grating (3.5) in the manner just described, and the related expression derived 
from (3.4) are given in appendix B. Equations (Bl) and (B2) provide 2N linearly 
independent equations for the B,, and B3j.  These equations have a unique 
solution provided none of the 8i = &r. 

The drag force exerted by the fluid on the body is readily computed using a 
technique developed by Payne & Pel1 (1960). These authors show that the drag 
force P on an isolated spheroid in an incident stream is given by 



Slow viscozcs $ow past a body of revolution 693 

where R and $ are the distance and polar angle using the centre of the spheroid 
as the origin. In  Gluckman et al. (1971) it is shown that evaluation of (3.6) for 
any co-axial distribution of spheroids leads to 

for the drag on the j t h  spheroid. The drag is therefore determined by the coeffi- 
cient of only the lowest-order rotational solution in (2.3), however, the value of 

depends implicitly on all terms in the expression for Y, since it is just one 
element in the set of matrix equations for the coefficients. 

The expression for the drag on a general body of revolution whose stream 
function is given by (3.2) is readily deduced from (3.7). In  the limit as the aspect 
ratio of the spheroid vanishes b +- 0, cj --f y,(x) and 

where D2(x) is the disturbance intensity per unit length of the lowest-order 
rotational component of the fundamental solution. 

4. Convergence to exact solution for prolate spheroid 
In obtaining the numerical results presented here, the authors chose the more 

expedient path of adapting for present needs the computer program already 
developed in Gluckman et al. (1971) for axisymmetric flow past multiple oblate 
spheroids rather than writing and debugging a new program based on equations 
(Bl), (B2). The similarity between using a finite number of singularities applied 
at discrete locations and dividing a continuous distribution into a finite number 
of uniform strength subdistributions has already been discussed. The multiple 
spheroid program used in Gluckman et al. has the flexibility for handling an 
arbitrary arrangement of fundamental separable oblate spheroidal solutions 
(2.3) with small but non-vanishing aspect ratio distributed at  discrete points 
along a common axis. With this restriction, one cannot use the continuous 
distribution of fundamental solutions (3.1) for which b = 0, but has t o  approxi- 
mate the kernel of the integral (3.2), and consequently (3.3) and (3.4), by a 
discrete point distribution of low aspect ratio oblate spheroidal singularities 
with touching p = po co-ordinate surfaces. Again, only the two lowest-order 
spheroidal multipoles are required, however: the simple compatibility relations 
(2.17) are no longer exact, and the ring-like disturbances emanating at the focal 
circle now lie some small distance below the surface. As discussed in Gluckman 
et ul., conditions (2.17) can be replaced with the requirement that the no-slip 
boundary conditions do not lead to a matrix equation for the B2,3j and D2,3i 
which is ill-conditioned as one approaches the apex 8, = &r of the inscribed 
spheroids. The latter is accomplished numerically by satisfying the no-slip 
boundary conditions at two symmetrically distributed points in the profile 
curve in close proximity to, rather than exactly at, 8, = +n. In  this manner, 
singular velocities are suppressed as one approaches the profile curve of the body 
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FIGURE 3. Drag correction factor h for a prolate spheroid of aspect ratio = 2.0 
using N boundary points with equal axial spacing. 

and a matrix equation obtained for the coefficients, which is equivalent in all 
other respects to (Bl) and (B2). 

In  order to demonstrate the convergence characteristics of this computational 
procedure for representing axisymmetric bodies of arbitrary shape, a prolate 
spheroid of aspect ratio 2.0 was selected, and sample drag calculations per- 
formed for an increasing number of approximating surface elements. This 
aspect ratio was chosen as it is too large to be represented by a converging 
sequence of spherical multipoles (see appendix A), and is small enough to require 
a reasonable number of oblate spheroidal singularities for convergence without 
consuming excessive amounts of computer time. Following the convention of 
Happel & Brenner, the drag on a prolate spheroid can be written as 

F = 67~,uUr,h, 

where r,  is the minor radius of the spheroid and h is a correction factor repre- 
senting the ratio of the drag on the spheroid to the drag on a sphere with the 
same projected area as the spheroid in a plane perpendicular to the stream 
direction. Drag correction factors h were calculated using oblate spheroidal 
singularities distributed at from 3 to 25 equally spaced stations along the axis 
of the prolate spheroid. Only the two lowest-order oblate spheroidal multipoles 
were used for each element, except the two end elements, where the first four 
multipoles in the series were used to obtain a more accurate representation of 
the spheroidal ends. The results of this experiment are shown in figure 3, which 
is a plot of the drag correction factor h as a function of the number of discrete 
point elements used for the representation. If only three elements are employed, 
the error in h is 12.5 %, whereas if a 25-point distribution is used the solution 
approaches the exact solution asymptotically with a local error of less than 0.4 %. 
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As will be evident from the results of $5, the relatively slow convergence to the 
exact solution is due to the difficulty in obtaining accurate end representations 
for surface elements nearly perpendicular to the axis unless very low aspect 
ratio spheroidal singularities are used. 

5. Objects with axially perpendicular surface elements 
The linear matrix of equations for the BZj and Baj (2.21a, b)  or (B l ) ,  ( B 2 )  

has no solution if the segment of the generating arc for any surface element is 
perpendicular to the axis. This difficulty arises because the coefficient of the 
first term in ( B 2 )  vanishes if dj = +n. In the prolate spheroid representation des- 
cribed in 3 4 this problem could easily be circumvented by a numerical approxi- 
mation scheme, since the portions of surface with vertical tangents were confined 
to just the two end points of the spheroid. For objects with flat end surfaces, such 
as the ends of a circular cylinder or the base of a cone, the problem of accurate 
end representations is obviously more critical. 

The general technique for handling axially perpendicular surface elements is 
closely related to the multipole truncation procedure developed for spheres and 
spheroids in Gluckman et al. (1971). Inspection of (2.3) and (2.5) shows that for 
B j  = $7r, qj  = 0 and all the odd-order terms in (2.3) vanish since I,(O) = 0 for n 
odd. The infinite series of even-order terms in (2.3) in the limit b = 0 provides a 
complete set of functions to satisfy the no-slip boundary conditions on the 
surface of a disk for any distribution of singularities in the rest of the flow field. 
For example, if the sole singularity is a uniform source a t  infinity, only the 
n = 2 terms are required, as shown in the discussion of (2.23), to satisfy the 
viscous-flow boundary conditions on the disk surface. For an arbitrary body of 
revolution with a blunt base or forward face, singularities of the form (3.1) will 
be distributed over the entire remaining surface of the object. These singularities 
will in general produce a complicated disturbance over the perpendicular sur- 
faces, and require the use of all even-order singularities in (2.3) with b = 0 to 
satisfy the no-slip boundary conditions exactly at  all points. However, in the 
spirit of Gluckman et al. approximate end representations, which approach the 
exact solution to any desired order of accuracy, can be achieved by truncating 
the series and satisfying the no-slip boundary conditions a t  discrete points 
along the generating line for each axially perpendicular surface. Each set of BBj 
and Dnj coefficients in this series provide the freedom to satisfy the real-fluid 
boundary conditions at  one discrete point on this generating line. Thus, the total 
solution for the stream function for an arbitrary convex body of revolution 
consists of the summation of a free-stream contribution the superposition 
integral in (3.2) and an infinite series obtained from (2.3) with n even and b = 0 
placed at  the axial location of each axially perpendicular portion of surface. 
Finally, in the numerical solution the linear matrix of equations (Bl) ,  ( B 2 )  
must be enlarged t o  include the truncated series representing each perpendicular 
surface and the values of all the unknown coefficients determined by a simul- 
taneous solution of this enlarged matrix equation. 

To take advantage of the computer program developed in Gluckman et al. 
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( 1971) the solution procedure described above for treating perpendicular surface 
elements had to be modified to take account of the fact the program in Gluckman 
et al. did not allow for spheroidal singularities with zero aspect ratios. In the 
numericalresults presentedin $ 9  5.1 and 5.2 small but finite aspect ratio spheroidal 
singularities were used to  describe blunt end effects. The boundary points a t  
which the no-slip boundary conditions were satisfied were therefore chosen to 
lie on the p = po  co-ordinate surface corresponding to the aspect ratio of the 
end singularities rather than the actual cone or cylinder surface. To this end, the 
solutions obtained describe cones and cylinders with varying degrees of bluntness. 

5.1. Results j b r  finite cylinders 

The techniques described in $5.1 and in $33 and 4 will now be applied to deter- 
mine the drag on short finite cylinders. The convergence characteristics of this 
new solution procedure will be indicated and the solutions compared with existing 
experimental data when available. 

It has been pointed out by Happel & Brenner (1965) that no previous theoreti- 
cal treatment is available for creeping motion relative to cylinders with aspect 
ratios of less than approximately five. However, a large amount of experimental 
data exists in this area. Before comparing the results for flow past short cylinders 
computed as described above with experimental results, the method used for 
describing settling rates will be outlined. 

The settling factor K is defined as the ratio of the terminal settling velocity 
of the body under consideration to the settling velocity of a perfect sphere having 
the same volume as the object. The Stokes law drag force acting on the sphere 
having the same volume as the cylinder is 

Fs = 6npUSrs, (5.1) 

where V, is the settling velocity of the sphere and rs is its radius. The drag force 
on a cylinder of radius r, can be written in the same form as (5.1) by introducing 
a multiplication factor h which depends only on the geometry of the cylinder. 
Thus, 

where U, is the settling velocity of the cylinder. From (5.1) and (5 .2 ) ,  < = .& if 
4 = 6npUcr,h, (5 .2 )  

&/Us = (rs/rn)/A) (5 .3 )  

where if the sphere and cylinder are to have equal volumes, rs = ($r ih) f ,  h being 
the cylinder length. Thus, the settling factor K is defined as 

(5.4) 

In  accord with our previous remarks the cylinder will be represented by oblate 
spheroidal singularities distributed a t  N origins along the cylinder axis. The 
N - 2 interior sets of singularities are equally spaced and involve only the two 
lowest-order spheroidal multipoles, whereas the end singularities will in the 
general case have a much finer aspect ratio, the number of end multipoles re- 
tained depending on the number of discrete boundary points at which the no- 
slip boundary conditions are to be satisfied on the p = p ,  co-ordinate surface 

K = UJU, = (rs/rn)/h. 
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Length h - - ~- 
Diameter 2r, No. of points, N 

0.50 

1.00 

2.00 

3.0 

4.0 

0.25 2 
3 
5 
7 
9 

2 
3 
5 
7 
9 

3 
5 
7 
9 

11 

3 
5 
7 
9 

11 
13 

5 
7 
9 

11 
13 
15 

5 
7 
9 

11 
13 
15 

Aspect ratio, alb 

0.125 
0.083 
0.050 
0.036 
0.028 

0.250 
0.167 
0.100 
0.071 
0.056 

0.333 
0.200 
0.143 
0.1 11 
0.091 

0.667 
0.400 
0.286 
0.222 
0.182 
0.154 

0.600 
0.429 
0.333 
0.273 
0.231 
0,200 

0.800 
0.571 
0.444 
0.364 
0.308 
0.267 

I ( ,  
this work 

0.776 
0.759 
0.746 
0.742 
0.738 

0.918 
0.892 
0.869 
0.857 
0-856 

1.038 
1.000 
0.974 
0.950 
0.945 

1-057 
1.020 
1.004 
0.994 
0.986 
0-983 

1.010 
0.996 
0.986 
0.979 
0-974 
0-970 

0.989 
0.973 
0.964 
0.956 
0.951 
0.947 

K ,  
Heiss 

& Coull 

0.762 

0.864 

0.958 

0.975 

0.958 

0.929 

K ,  
eqn. 
( 5 . 5 )  

0.759 

0+381 

0.976 

1.009 

0.989 

0.961 

TABLE 1. Comparison of settling factors for short cylinders with experimental results of 
Heiss & Coull (1952) and empirical results of Happel & Brenner (equation ( 5 . 5 ) ) ,  without 
special consideration for end effects. 

for the end singularities. The spacing for the discrete point distribution is 
determined by the condition that the p = p o  co-ordinate surfaces for each 
adjacent set of singularities be touching. Thus, 

h = 2(N - 2) u + 4a,, Y, = b, 

a, is the minor radius of p = po  co-ordinate surfaces for end spheroidal singu- 
larities, a is the minor radius of p = p ,  co-ordinate surfaces for interior spheroidal 
singularities, b is the major radius ofp = po  co-ordinate surfaces for all spheroidal 
singularities. 

Finally, Happel & Brenner (1965) present an empirical correlation for 



698 

1 .0 

0.9 

K 

0.8 

0.7 
0 

M .  J .  Gluckman, 8. Weinbaum and R. Pfeffer 

t i 1 i 

d 

1 2 3 
Length-to-diameter ratio, h/Zr, 

4 

FIGURE 4. Settling factors for short circular cylinders: 0, experimental data of Heiss B 
Coull; 0, empirical data of Happel & Brenner; A, this study, table 1;  0 ,  this study, 
table 4. 

calculating the settling rates basedon experimental results obtained for a number 
of axisymmetric bodies, i.e. 

(5 .5 )  

where the sphericity Y is defined as the ratio of the area of a sphere of the same 
volume as the particle to the area of the particle itself. 

To illustrate the importance of end effects, several sets of numerical experi- 
ments were conducted, and the results were compared with both the experi- 
mental data of Heiss & Coull (1952) and the empirical predictions of (5.5). In  
the first set of experiments shown in table 1, the two lowest-order finite aspect 
ratio multipoles from which the fundamental solution (2.22) was derived in the 
limit b = 0 were distributed at N equally spaced stations along the cylinder axis. 
The no-slip boundary conditions on the front and rear surfaces were not satisfied, 
since the series of higher-order singularities used to  describe end effects was 
omitted. 

These results show that-although the settling factor calculated using this first 
approximation is in reasonable agreement with the experimental and empirical 
settling results, convergence is not obtained as N is increased. This inability to 
converge is due to the poor end representations that result when the no-slip 
boundary conditions are not adequately satisfied near the cylinder ends. 

The data in table I are plotted in figure 4, where our theoretical values of K 
are based on the largest value of N for each cylinder. Interestingly, the settling 
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No. of multipoles 
No. of used for end 
P = Po End aspect Central aspect P = Po 

surfaces, N ratio, a$ ratio, a/b surfaces, M, K 

5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 

3 
5 
7 
9 

11 

0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 

0.15 
0.10 
0-05 
0.03 
0.01 
0.005 

0.05 
0.05 
0.05 
0.05 
0.05 

0.133 
0.133 
0.133 
0.133 
0.133 
0.133 
0.133 

0.067 
0.100 
0.133 
0.147 
0.160 
0.163 

0.400 
0-133 
0.080 
0-057 
0.044 

2 
4 
6 
8 

10 
12 
14 

6 
6 
6 
6 
6 
6 

6 
6 
6 
6 
6 

TABLE 2.  Settling factors for short cylinders (h/2r, = 0.5) using 
higher-order multipoles for ends 

0.852 
0.894 
0-890 
0.890 
0.890 
0.890 
0.890 

0.913 
0.903 
0-890 
0.887 
0.881 
0.880 

0.896 
0.890 
0.890 
0.888 
0.887 

rates based on even this first crude use of the multipole truncation technique are 
in closer agreement with experimental data than the empirical predictions of 
(5.5). It should be pointed out, however, that the experimental results were not 
obtained in a fluid of infinite extent. Heiss & Coull (1952) used certain empirical 
techniques to correct their raw data for wall effects, but no conclusion can be 
drawn as to how satisfactory these correction methods are. 

The second series of numerical experiments reported in table 2 is designed to 
refine the representation of the ends of the cylinder by using higher-order 
multipoles to satisfy the no-slip boundary conditions at  increasing numbers of 
points on the generating curves of the end spheroidal singularities. A cylinder 
having a fixed length-to-diameter ratio of 0-5 was chosen and three sets of cal- 
culations performed. The distribution number N of oblate spheroidal singulari- 
ties (3 6 N 6 11) was varied, the aspect ratio a J b  of the end singularities was 
varied and finally, the no-slip boundary conditions were satisfied at  varying 
numbers of points Me (1 < Me < 13) on the I, = p o  co-ordinate surface of the end 
spheroidal singularities. 

As the first set of results in table 2 show, convergence to three significant 
figures is obtained when the no-slip boundary conditions are satisfied at  only five 
approximately equally spaced points on the p = p o  co-ordinate surface €or the 
end singularities. One would also conclude from these results that the effect of 
the higher-order multipoles is localized and does not significantly alter the 
solution for interior singularities. This rapid convergence of the solution to a 
desired boundary shape provided the boundary points conform to some natural 
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co-ordinate system was also exhibited by the multisphere and spheroid soh-  
tions presented in Gluckman et al. This behaviour suggests that improved end 
representations should be obtained not by satisfying boundary conditions at  
more points along the generating arc of the end p = p o  surfaces, since the solu- 
tion has converged in this sense, but by choosing end singularities whose aspect 
ratio corresponds more closely to the geometry of the cylinder ends. The second 
set of calculations shown in table 2 shows the effect of decreasing the aspect ratio 
of the end spheroidal singularities from 0.15 to 0.005. It is evident from these 
results that end singularities with an aspect ratio of 0.01 or less yield drag results 
that have converged to roughly 0.1 yo and should therefore accurately represent 
the cylinder ends. 

The third set of results in table 2 shows the effect of increasing the number of 
interior boundary points for a fixed end representation. The results indicate 
that the convergence of the solution in the interior region as N increases is 
satisfactory, and provides drag results accurate to roughly 0.5 Yo for aspect 
ratios of 0.2 or less on central spheroids. 

The conclusions drawn from tables 1 and 2 concerning the convergence of 
the solution for the cylinder ends are also supported by the plots of the @ = 0 
boundary streamline shown in figures 5 and 6. The touching p = p,, co-ordinate 
surfaces of the local oblate spheroidal co-ordinate system for each set of singu- 
larities are included for reference in both figures. Figure 5 corresponds to the 
first set of experiments described in table 1, in which only the two lowest-order 
multipoles are used for each discrete point element including the cylinder ends. 
The failure of this solution to satisfy the no-slip boundary conditions on the 
front and rear faces of the cylinders is evident from the large deviation of the 
theoretically predicted $- = 0 curve from the actual cylinder boundary shown 
dashed in the figure. Figure G shows the results obtained for the $- = 0 boundary 
when a truncated series of low aspect ratio multipoles are used to describe end 
effects. For the case shown the no-slip boundary conditions were satisfied at  13 
points on the p = p,, co-ordinate surface of an end spheroid whose aspect ratio 
was 0.05. The greatly improved representation of the $- = 0 boundary at  the 
cylinder ends is self-evident. The second @ = 0 streamline in this figure represents 
an interior circulation with very low velocity entrained eddies that has no 
physical significance for the exterior flow. The magnitude of the velocity in the 
entrained eddies is a measure of the magnitude by which the no-slip boundary 
conditions are violated on the approximate @ = 0 boundary streamline between 
boundary points. Maximum velocities on this streamline were less than one- 
thousandth of the free-stream velocity for the computation shown in figure 6. 

Finally, table 3 presents data for flow past short cylinders of various length- 
to-diameter ratios and compares settling factors with those of Heiss & Coull 
(1952). It can be seen that, as the number of singularities used to represent each 
cylinder is increased, the settling factor appears to asymptote to a value that is 
in excellent agreement with the experimentally measured values of K .  Some of 
the improved results from table 3 which include the cylinder end corrections 
have been plotted in figure 4. These results are in better agreement with the 
experimental data at  the low length-to-diameter ratios than are the previous 
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FIGURE 5 .  $ = 0 boundary streamline for short cylinder with 
aspect ratio = 1.0 neglecting end singularities. 
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FIGURE 6 .  $ = 0 boundary streamline for short cylinder with aspect ratio = 0.5 using a 
truncated series of end singularities. a = 0.133, a, = 0,05, N = 5 ,  M, = 13. 

settling factors presented in table 1. This improvement is in accord with the fact 
that the end corrections become increasingly important as the length-to- 
diameter ratio of the cylinder decreases. 

5.2. Results,for blunt end cone 

As an example of a non-analytic boundary shape whose generating curve is a 
function of axial distance we next consider the creeping flow past a right circular 
cone of apex angle 8. The solution technique employed is similar to that used to 
represent short cylinders. The end (or base) of the cone is represented by oblate 
spheroidal singularities of low aspect ratio aJbe using higher-order multipoles 
to satisfy more accurately the no-slip boundary conditions on the terminal 
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Length h 
Diameter 2r, 

0.25 

- =- 

0.5 

1.0 

2.0 

3.0 

4.0 

No. of 
inscribed 
P = Po 

surfaces, N 

3 
7 

11 
3 
7 

11 

3 
7 

11 
3 
7 

11 

5 
9 

11 
5 
9 

11 

5 
9 

11 
5 
9 

11 

7 
9 

11 
7 
9 

11 

7 
9 

11 
7 
9 

11 

End 
aspect 
ratio, 
a 3  

0.05 
0.05 
0.05 
0.005 
0.005 
0,005 

0.05 
0.05 
0.05 
0.005 
0.005 
0.005 

0.05 
0.05 
0.05 
0.005 
0.005 
0.005 

0.05 
0.05 
0.05 
0.005 
0.005 
0.005 

0.05 
0.05 
0.05 
0.005 
0.005 
0.005 

0.05 
0.05 
0.05 
0.005 
0.005 
0.005 

Central 
aspect 
ratio, 

alb 

0.150 
0.030 
0-017 
0.240 
0.048 
0.027 

0.400 
0.080 
0.044 
0.490 
0.098 
0.054 

0.300 
0.129 
0.100 
0.330 
0-141 
0.110 

0.633 
0.271 
0.211 
0.663 
0.284 
0.221 

0.580 
0.414 
0.322 
0.598 
0.427 
0.332 

0.780 
0.557 
0.433 
0.798 
0.570 
0.443 

No. of 
multipoles 

used for end 
representation, 

5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 

Me 

K ,  
this 

work 

0.775 
0.773 
0.772 
0.764 
0.760 
0.759 

0.896 
0.890 
0.887 
0.884 
0.878 
0.877 

0,975 
0.971 
0.969 
0.967 
0.961 
0.960 

1.002 
0.994 
0.993 
0.997 
0.988 
0.986 

0.979 
0.976 
0.961 
0.974 
0.971 
0.969 

0.952 
0.949 
0.947 
0.948 
0.945 
0.943 

TABLE 3. Settling factors for short cylinders (0.25 < h/2r, < 4-0) 
using higher order inultipoles for the ends 

K ,  
Heiss 85 
Coull 
(1952) 

0.762 

0.864 

0.958 

0.975 

0.958 

0.929 

p = p,, co-ordinate surface. This permits the higher-order multipoles to produce 
an accurate representation of the base of the cone that will converge to the true 
planar shape as the aspect ratio of the end spheroidal singularities approaches 
zero. The rest of the cone interior is divided into N sections of equal axial 
distance. 

The section closest to the apex can be treated to any order of accuracy by 
subdividing this f i s t  section into any number of smaller sections. Except for 
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No. of 
inscribed 
P = Po 

surfaces, N 

15 
15 
15 
15 
15 
15 

9 
9 
9 
9 
9 
9 

3 
5 
7 
9 

11 
13 
15 

No. of 
Minor axis Minor axes multipoles 

of end of other used for end 
spheroid, spheroids, representation, 

a, a Me 

0.05 0.0544 2 
0.05 0.0544 4 
0.05 0.0544 6 
0.05 0.0544 8 
0.05 0.0544 10 
0.05 0.0544 12 

0.005 0.0957 8 
0.01 0.0951 8 
0.03 0.0929 8 
0.10 0.0851 8 
0.15 0.0796 8 
0-20 0.0740 8 

0.005 0.2870 8 
0.005 0.1722 8 
0.005 0.1230 8 
0.005 0.0957 8 
0.005 0.0783 8 
0.005 0.0662 8 
0.005 0.0574 8 

TABLE 4. Drag correction factor h (5.8) for a 60' cone r, = 1 

h 

0.8774 
0.8666 
0.8710 
0.8712 
0.8713 
0.8713 

0.8925 
0.8899 
0.8801 
0.8466 
0.8234 
0.8010 

0.8877 
0.8908 
0.8923 
0.8925 
0.8926 
0.8928 
0.8931 

the base representation, only the two lowest-order multipoles are to be used. 
Convergence to the exact conical boundaries can be expected as the number of 
boundary points approaches infinity using the same arguments presented in the 
discussion of the cylinder. 

Drag results will be presented for flow past a 30' half-angle cone represented 
by a discrete distribution of N sets of spheroidal singularities (3  < N < 15) 
when the no-slip boundary conditions are satisfied at  Me points (2  < Me < 14) 
on the generating arc of the p = p o  co-ordinate surface closest to the base of 
the cone. These results will be reported in a terminology consistent with that 
used for the case of flow past cylinders. 

From (3.7) the total drag force on the cone is 

Fo can be related to the Stokes drag on a sphere having the same diameter as 
the cone (at its base) by introducing a multiplicative factor A:  

where r, is the radius of the base of the cone. Equating (5 .6 )  and (5 .7)  one obta,ins 
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Some of the results for flow past a 30" half-angle cone are presented in table 4. 
Three sets of numerical experiments were performed to show the dependence 
of the accuracy of the solution on (i) the number of elements N in the distri- 
bution, (ii) the aspect ratio of the end singularities, and (iii) the number of multi- 
poles used to satisfy the no-slip boundary conditions on the p = po  surface 
for the base of the cone. The trends of the results shown in table 4 are similar 
to those discussed in table 2 for the cylinder. With other factors held constant, 
h converges to four significant digits when 8 multipoles are used to satisfy the 
boundary conditions a t  equally spaced points along the generating arc of the 
end p = p o  co-ordinate surface. h is a sensitive function of the aspect ratio of the 
end singularity. If the results of the second set of calculations are linearly extra- 
polated to a, = 0 one obtains a value for h of 0.895. Finally, increasing N beyond 
7 produces changes in h that are of the order 0.1 yo or less. 

6. Approximations for long finite cylinders 
I n  theory, the elemental oblate spheroidal singularity construction technique 

described in $9 2-5 can be applied to the creeping flow past an arbitrary convex 
body of revolution. A practical limitation exists, however, for bodies of high 
aspect ratio. If one wishes to minimize the error in the drag computed from 
(3.8), a large number of singularities of low aspect ratio would be required for 
the representation. For example, to represent a cylinder having a length-to- 
diameter ratio of 40 using elemental oblate spheroidal singularities of aspect 
ratio 0.05 would require 800 multipoles excluding end effects. To determine the 
four unknown coefficients in the two lowest-order multipoles describing each 
surface element would involve the solution of 3200 linear simultaneous algebraic 
equations. 

A simple yet good engineering approximation to the flow past high aspect 
ratio bodies will now be developed and applied to long finite cylinders. We 
shall show that the drag on such elongated objects can be well approximated by 
a series of prolate spheroidal singularities with touching p = po  co-ordinate 
surfaces. The details of the solution for the stream function for flow past multiple 
prolate spheroids is given in Gluckman et al. (197 1). The basic solution is equation 
(2.3), now modified so that p j  and q j  apply to prolate spheroidal co-ordinates: 

Rlj = [ ( ~ - 2 j d - ~ ) ~ + y ~ ] * ,  RZj = [ ( ~ - 2 j d + ~ ) ~ + y 2 ] B .  

Convergence of this representation technique for long cylinders cannot be 
expected, since the no-slip boundary conditions will not be satisfied exactly on 
either the lateral surface of the cylinder or its ends. The errors due to end effects, 
however, should be relatively unimportant for very extended objects. Drag 
correction factors for long cylinders based on prolate spheroidal representation 
are compared with Burger's approximate solution, 

27TpU,h F, = 
In @ / e r n )  - 0.72' 



8 -  

7 -  

6 -  

5 -  
h 

4 -  

3 -  

3 -  

1 

705 

I 1 I I I I I I 
N - 

- 

- 

- 

- 

- 

- 
I I I I I I I I 

FIGURE 7. Comparison of present approximate solutions for high aspect ratio prolate 
spheroid with Burgers’s approximate results: N = number of prolate spheroids; A, 
Burgers’s predicted values. 

No. of 
Lellgth - h spheroidal Aspect h h 

Diameter 2r, elements, N ratio, a/b this work eqn. (6.3) 

10.0 1 
2 
3 
5 

20.0 1 
2 
3 
5 
9 

15 

40.0 1 
2 
3 
5 
9 

15 

10.0 
5.0 
3.3333 
2.0 

20.0 
10.0 
6.6667 
4.0 
2.2222 
1.3333 

40.0 
20.0 
13.3333 
8.0 
4.4444 
2.6667 

2.647 2.929 
2.815 
2.883 
2.946 

4.172 4.490 
4.384 
4.469 
4.548 
4.611 
4.651 

6.859 
7-150 
7.265 
7-370 
7.450 
7.496 

7.280 

TABLE 5. Comparison of drag correction factors for long cylinders calculated 
from the multipole technique, with approximation of Burgers 

based on the point force technique in table 5. From the definition of h the force 
on the cylinder can be represented by 

8 = 67r,uU,r,h. (6.2) 
h 

{3r,[ln (h/rn) - 0.721)’ 
Equating (6.1) and (6.2) h = 

45 F L M  55 
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Table 5 demonstrates that good approximations to the drag on long cylinders 
can be achieved by this technique. For the reasons mentioned above, conver- 
gence is not achieved using any reasonable number of prolate spheroidal singu- 
larities. The results of table 5 are presented graphically in figure 7. It can be 
seen that the closest approximation to Burgers' results always seem to occur 
when the cylinder is represented by between three and five prolate spheroidal 
elements. 
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R. P. thank the National Science Foundation for supporting this research under 
grant GK- 16506. 

Appendix A 
Sampson (1891) has shown that the solution for the stream function to the 

creeping motion axisymmetric flow equation can be represented by an infinite 
series of simple separable solutions placed at the origin of a given orthogonal 
co-ordinate system. In spherical co-ordinates for flow in an unbounded medium 
the series can be represented by 

m 

n=2  
@ = &A2r2sin26+ 2 [B,r-"+1+D,r-n+3] I, (cos8). W) 

The series of Gegenbauer functions represents a series of multilobular distur- 
bances emanating from the origin. The constants inside the brackets determine 
the strength of each multipole in the series and provide the freedom to satisfy 
the no-slip boundary conditions at  one point on the generating arc of the sub- 
merged object. Sampson has also shown that for flow past a perfect sphere only 
the first multipole (n = 2) is required to represent exactly the no-slip boundary 
conditions, i.e. the strengths of all the higher-order multipoles are identically 
zero. O'Brien (1968) and Hyman (1970) have shown that good numerical approxi- 
mations can be obtained for slightly deformed spheres by including the effects 
of higher-order multipoles from the solution set represented by (Al).  

Before the limitations of this approach were fully understood, the authors 
attempted to extend the results of O'Brien by applying the same procedure to 
represent objects of greater eccentricity than those considered by earlier workers. 
In  particular, prolate spheroids of different aspect ratios were chosen as the 
bodies to be represented by the spherical multipole series, as exact solutions for 
these objects were readily available in the literature. 

Two numerical experiments were conducted. First, solutions for prolate 
spheroids having aspect ratios from 1.0 to 20.0 were computed, using the first 
6 spherical multipoles in the series. The results (table 6) are expressed in terms of 
the drag correction factor defined in Gluckman et ak. (1971) and (5.2)) and 
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Aspect 
ratio 

1.0 
1.5 
2.0 
3.0 
5.0 

10.0 
20.0 

A, 
this study 

1.0 
1.107 
1.820 
2.461 
3.987 
9.359 

18.372 

A, exact 

1.000 
1.102 
1.204 
1.405 
1.785 
2,647 
4.172 

TABLE 6. Representation of prolate spheroids of varying aspect ratios, 
using the first six spherical multipoles in the series 

No. of multipoles 
retained in the A,  

solution this study 

2 
4 
6 
8 

10 
12 
14 
16 
18 

1.000 
1-353 
1.820 
3.033 
2.754 
2.939 
3.347 
1.481 
4.113 

A, exact 

1.204 
1-204 
1.204 
1-204 
1.204 
1.204 
1-204 
1.204 
1.204 

TABLE 7. Representation of a prolate spheroid of aspect ratio = 2, 
using from 2 to 18 spherical multipoles 

compared with the exact solutions of Happel & Brenner (1965). It can be seen 
from these results that, for aspect ratios greater than 1-5, this solution procedure 
produces estimates of the drag correction factor that diverge rapidly as the aspect 
ratio increases. The second experiment was an attempt to investigate the con- 
vergence characteristics of this procedure by increasing the number of spherical 
multipoles retained in the solution for a prolate spheroid of prescribed aspect 
ratio. Thus, a prolate spheroid of aspect ratio 2.0 was described using from 2 to 
18 spherical multipoles. The results of this trial are presented in table 7. It is 
interesting to note from the table that increasing the number of spherical 
multipoles to represent the grossIy distorted sphere (prolate spheroid) results in 
an unstable oscillatory type of solution, with the amplitude of the oscillations 
increasing as the number of multipoles is increased. 

Appendix B 
In  $ 3  a numerical approximation scheme was devised for the evaluation of 

( 3 4 ,  and its counterpart equation obtained from (3.4) for the vanishing of the 
ti, velocity component along the profile curve y,(x) of the object. In  this scheme 
the no-slip boundary conditions were to be satisfied at the midpoint of the 
straight line segment used to generate each cone frustrum. For improved 

45-2 
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accuracy a different approximation was to be used in the integration over the 
conical element depending on whether the boundary point a t  which the no-slip 
boundary conditions were to be satisfied lay on the element in question or on 
one of the other conical surface elements. When the boundary point was on the 
same surface element the kernel of the integral was approximated by the first 
two terms of the Taylor series obtained from (2.15)-(2.17) and (2.19). When the 
boundary point was outside the surface element the kernel was treated as a 
constant in the integration over the surface element. The value of the constant 
was based on the niidpoints of both the element over which the integration was 
being performed and the element in which the boundary point was located. 
The results of this integration of (3.3) and (3.4) are given below, where the 
subscript j denotes the conical element a t  whose midpoint the no-slip boundary 
conditions are to be satisfied. 

where j = 1,2 ,3 ,  . . . , N and nIj and 7~~~ are given in (2.13) with 0 = By. 
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